Group RFM analysis as a novel framework to discover better customer consumption behavior

نویسندگان

  • Hui-Chu Chang
  • Hsiao-Ping Tsai
چکیده

The RFMmodel provides an effective measure for customers’ consumption behavior analysis, where three variables, namely, consumption interval, frequency, and money amount are used to quantify a customer’s loyalty and contribution. Based on the RFM value, customers can be clustered into different groups and the group information is very useful in market decision making. However, most previous works completely left out important characteristics of purchased products, such as their prices and lifetimes, and apply the RFM measure on all of a customer’s purchased products. This renders the calculation of the RFM value unreasonable or insignificant for customer analysis. In this paper, we propose a new framework called GRFM (for group RFM) analysis to alleviate the problem. The new measure method takes into account the characteristics of the purchased items so that the calculated the RFM value for the customers are strongly related to their purchased items and can correctly reflect their actual consumption behavior. Moreover, GRFM employs a constrained clustering method PICC (for Purchased Items-Constrained Clustering) that could base on a cleverly designed purchase pattern table to adjust original purchase records to satisfy various clustering constraints as well as to decrease re-clustering time. The GRFM allows a customer to belong to different clusters, and thus to be associated with different loyalties and contributions with respect to different characteristics of purchased items. Finally, the clustering result of PICC contains extra information about the distribution status inside each cluster that could help the manager to decide when is most proper to launch a specific sales promotion campaign. Our experiments have confirmed the above observations and suggest that GRFM can play an important role in building a personalized purchasing management system and an inventory management system. 2011 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Customer behavior mining based on RFM model to improve the customer relationship management

Companies’ managers are very enthusiastic to extract the hidden and valuable knowledge from their organization data. Data mining is a new and well-known technique, which can be implemented on customers data and discover the hidden knowledge and information from customers' behaviors. Organizations use data mining to improve their customer relationship management processes. In this paper R, F, an...

متن کامل

Analyzing Customers of South Khorasan Telecommunication Company with Expansion of RFM to LRFM Model

Telecommunication Companies use data mining techniques to maintain good relationships with their existing customers and attract new customers and identifying profitable/unprofitable customers. Clustering leads to better understanding of customer and its results can be used to definition and decision-making for promotional schemes. In this study, we used the 999-customer purchase records in Sout...

متن کامل

Data Mining Using RFM Analysis

RFM stands for Recency, Frequency and Monetary value. RFM analysis is a marketing technique used for analyzing customer behavior such as how recently a customer has purchased (recency), how often the customer purchases (frequency), and how much the customer spends (monetary). It is a useful method to improve customer segmentation by dividing customers into various groups for future personalizat...

متن کامل

New Approach for Customer Clustering by Integrating the LRFM Model and Fuzzy Inference System

This study aimed at providing a systematic method to analyze the characteristics of customers’ purchasing behavior in order to improve the performance of customer relationship management system. For this purpose, the improved model of LRFM (including Length, Recency, Frequency, and Monetary indices) was utilized which is now a more common model than the basic RFM model apt for analyzing the cus...

متن کامل

Knowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services

The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2011